$ cd proofofconcept/v7_pickle_web_interface/flask
$ make dockerlive
$ python
>>> import sympy
>>> sympy.__version__
'1.5.1'
>>> from sympy.parsing.latex import parse_latex
>>> import json
>>> with open('data.json') as json_file:
... dat = json.load(json_file)
>>> for expr_id, expr_dict in dat['expressions'].items():
... print(expr_dict['latex'])
>>> for expr_id, expr_dict in dat['expressions'].items():
try:
x = parse_latex(expr_dict['latex'])
except Exception as er:
print('expr ID =', expr_id)
print(er)
Using that approach, I found the following problems in the current (valid) Latex expressions used in the Physics Derivation Graph.
Subscripts with spaces
expr ID = 8871333437I don't understand this
PE_{\rm Earth\ surface}
~~~~~~~~~~~~~^
I don't understand this
r_{\rm geostationary\ orbit}
~~~~~~~~~~~~~~~~~~~~^
Use of "\left."
expr ID = 0439492440I don't understand this
\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^
Spaces in subscript
expr ID = 7575859306I don't understand this
\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
~~~~~~~~~~~~~~~~~~~^
expr ID = 7575859308
I don't understand this
\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
~~~~~~~~~~~~~~~~~~~^
Apostrophe
expr ID = 4662369843I don't understand this
x' = \gamma (x - v t)
~^
expr ID = 2983053062
I don't understand this
x = \gamma (x' + v t')
~~~~~~~~~~~~~^
expr ID = 3426941928
I don't understand this
x = \gamma ( \gamma (x - v t) + v t' )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^
Comma in subscript
expr ID = 9973952056I expected something else here
-g t = v_y - v_{0, y}
~~~~~~~~~~~~~~~~~^
expr ID = 7391837535
I expected something else here
\cos(\theta) = \frac{v_{0, x}}{v_0}
~~~~~~~~~~~~~~~~~~~~~~~~~^
expr ID = 8949329361
I expected something else here
v_0 \sin(\theta) = v_{0, y}
~~~~~~~~~~~~~~~~~~~~~~~^
Spaces
expr ID = 3920616792I don't understand this
T_{\rm geostationary orbit} = 24\ {\rm hours}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^
Much greater than
expr ID = 9674924517
I don't understand this
K >> G
~~~^
No comments:
Post a Comment