What's missing is the AST structure that defines where the arguments go with respect to the operator. For example,
x + y
is valid while
x y +
is not.
Similarly,
cos x
is valid while
x cos
is not.
While I can state these concepts I don't know how to formalize the notation.
For example, a definite integral takes 4 arguments in a specific location:
int_x^y f(z) dz
I could express operators using a latex macro
\documentclass[12pt]{article} \usepackage{amsmath,amssymb,amsfonts} \usepackage[dvipdfmx,colorlinks=true,pdfkeywords={physics derivation graph}]{hyperref} \newcommand\addition[2]{ #1 + #2} \newcommand\subtraction[2]{ #1 - #2} \newcommand\divisionSameLine[2]{ #1 / #2 } \newcommand\divisionFrac[2]{ \frac{ #1}{ #2} } \newcommand\integralDefinite[4]{ \int_{ #1}^{ #2} #3 #4} \newcommand\addXtobothsides[3]{Add $#1$ to both sides of Eq.~\ref{eq:#2}; yields Eq.~\ref{eq:#3}.} \title{Lorentz transformation} \date{\today} \setlength{\topmargin}{-.5in} \setlength{\textheight}{9in} \setlength{\oddsidemargin}{0in} \setlength{\textwidth}{6.5in} \begin{document} \maketitle \begin{abstract} This is the abstract \end{abstract} \begin{equation} \addition{a}{b} \end{equation} \begin{equation} \divisionFrac{a}{b} \end{equation} \begin{equation} \integralDefinite{a}{b}{f(x)}{dx} \end{equation} \end{document}
Compile to PDF using
latex runthis.tex latex runthis.tex dvipdfmx runme.dvi
No comments:
Post a Comment